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Abstract
The shear flow and the dielectric α-process in molecular glass formers is modeled in terms of
local structural rearrangements which reverse a strong local shear. Using Eshelby’s solution of
the corresponding elasticity theory problem (Eshelby 1957 Proc. R. Soc. A 241 376), one can
calculate the recoverable compliance and estimate the lifetime of the symmetric double-well
potential characterizing such a structural rearrangement. A full modeling of the shear relaxation
spectra requires an additional parametrization of the barrier density of these structural
rearrangements. The dielectric relaxation spectrum can be described as a folding of these
relaxations with the Debye process.

1. Introduction

From an experimental point of view, broadband dielectric
spectroscopy [1] is the most versatile method to study the
flow process in undercooled molecular liquids. However,
the relation between dielectric relaxation and shear flow is
not yet clear. The classical Debye picture and its extension
to viscoelasticity [2, 3] considers the molecule as a small
sphere immersed in the viscoelastic liquid. It predicts a slow
dielectric decay, about a factor of ten slower than the one
found in experiment [4, 5]. A thorough quantitative analysis
of dielectric and shear data in seven glass formers [6] showed
a general qualitative agreement with the extended Debye
scheme, but a rather poor quantitative fit.

One cannot help feeling that the extended Debye scheme
mistreats the structural rearrangements of the highly viscous
fluid. The Debye relaxation time of the molecular orientation
is usually longer than the Maxwell relaxation time of the shear
stress, the more so the larger the molecular volume is. No such
retardation is expected for a local structural rearrangement,
which ought to be characterized by the same relaxation time for
shear and dielectrics. Thus the modeling should rather separate
the viscous effects from those of the structural rearrangements,
both in shear and dielectrics. Also, in the present unsettled
state of understanding of the highly viscous flow, with many
different ideas and recipes [7–11], an attempt to understand
the viscous flow itself in terms of a sequence of structural
rearrangements in time seems legitimate. This is the purpose
of the present paper.

In order to contribute effectively to the flow, the structural
rearrangement should change the shape of the rearranged

region in the direction of the flow. This implies a strained
state of the embedding matrix, against the flow direction before
the jump and in the flow direction after. This mechanism
will be explained in detail in the next section, section 2. It
leads to a finite lifetime of the corresponding double-well
potential, because the surrounding matrix is itself able to flow.
This lifetime implies a specific cut-off function for the barrier
density of the structural rearrangements. The comparison with
experiment in section 3 requires a specification of the barrier
density, which does not follow from the same picture. As
we will see, this requires three parameters even if there is no
Johari–Goldstein secondary relaxation peak, and three more if
such a peak is present. Such a large number of parameters
makes it difficult to check the validity of the model with
a certainty from the rather broad and featureless relaxation
spectra.

2. The Eshelby model

2.1. Shear strain defects

The central concept of this model is a structural rearrangement
of a limited region in the sample which changes its shape to
a sheared one. A simple example of such a rearrangement
is the special case of four closely packed spherical atoms or
molecules shown in figure 1.

Imagine that the flow occurs by expansion in the vertical
direction and a contraction of the horizontal direction of the
figure. After a while, the four molecules at the top of the figure
will no longer experience an adapted matrix, but rather a matrix
which tends to compress them in the horizontal direction and
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Figure 1. Elementary flow process (schematic), involving a
rearrangement of four closely packed spherical atoms or molecules.
The dashed lines show the shape of the hole containing the four
molecules in the unstrained matrix, the continuous lines the shape of
the hole in the strained matrix.

to tear them apart in the vertical one. Since the four molecules
have the alternative of the equivalent close packing shown at
the bottom of the figure, there is a moment in time at which
one has a symmetric double-well potential for molecules and
matrix, the situation at the center of the figure.

The Eshelby model described here supposes that the
elementary flow process in molecular liquids is of this
nature, not necessarily restricted to four molecules, but
involving a structural rearrangement by a thermally activated
jump between two stable locally ordered configurations with
opposite shear strain with respect to the embedding matrix.

The physical problem of a small piece of matter able
to transform to a sheared shape within an elastic matrix
was treated fifty years ago by several authors, notably by
Eshelby [12, 13].

Here, we translate Eshelby’s result into the usual
convention, in which the shear angle e and the shear stress σ

are related by σ = Ge (G infinite frequency shear modulus) at
short times and by σ = ηė (η viscosity) in the long time limit.
Let vi be the volume of the spherical inclusion and ei the shear
angle difference between its two stable configurations (in the
example of figure 1, ei = π/3). Then the energy of the two
equally strained configurations of the center of figure 1 is

Ea = γ

8
Gvi e

2
i . (1)

The coefficient γ is given by

γ = 7 − 5σP

15(1 − σP)
, (2)

where σP is Poisson’s ratio. Since Poisson’s ratio lies
between 0.1 and 0.44 for the known glasses, γ lies
between 0.48 and 0.57, close to 1/2.

Eshelby’s solution divides the energy into two almost
equal parts, one located in the inclusion and one outside. Their
ratio is γ /(1 − γ ). The inclusion would have to distort by ei/2
to fit exactly into the unstrained hole. In the four-atom case

of figure 1, this is the saddle point energy for the thermally
activated jump between the two stable configurations. It is
considerably less than twice the energy of the two stable
Eshelby minima because the saddle point has a lower energy
than the harmonic extrapolation. We will see later that this
cannot be true for the defects which actually destabilize the
amorphous solid.

The Eshelby treatment also supplies the interaction energy
of the strain defect with the external stress component σ

oriented along the shear strain ei

Eint = −σvi ei

2
. (3)

This implies that the asymmetry � between the two minima
changes by σvi ei/2 in the presence of an external stress σ , or
by eGvi ei/2 in the presence of an applied external strain e.

2.2. Double-well potential lifetime and cut-off function

The lifetime τc of such a strain defect in the viscous liquid
is estimated in a simple mean-field consideration. The shear
stress outside the inclusion (see figure 1), where other and
independent strain defects exist, can decay according to the
Maxwell relaxation time

τm = η

G
. (4)

We assume that the energy inside the inclusion can only decay
by the yielding of the surrounding matrix. Then the energy
which has to decay is about twice the outside energy, which
implies that τc is about twice τm. More accurately, one has
to take into account that the outside energy is not pure shear;
about 10% of it is compressional energy, which cannot be
expected to decay. Thus one should have

τc = 2.2τm. (5)

The double-well potential lifetime τc determines the cut-
off-barrier Vc of the strain defects participating in the flow
process according to the Arrhenius equation

τV = τ0 exp(V/kBT ), (6)

where T is the temperature and τ0 is a microscopic lifetime of
10−13 s. At the critical energy barrier Vc, the potential decay
begins to become faster than the jumps over the barrier. If
the barrier is higher than Vc, the double-well potential begins
to flow away before the population of the two minima can
equilibrate. Therefore these higher barriers will not participate
in the flow process.

Since one has two competing equilibration processes, the
potential decay with the time constant τc and the thermally
activated jumps over the barrier with the time constant τV, the
contribution of the jump mechanism is given by the cut-off
function lc(V )

lc(V ) = τc

τc + τV
= 1

1 + exp((V − Vc)/kBT )
. (7)
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2.3. Stationary flow and recoverable compliance

In a stationary flow ė, the double-well potential asymmetry
� changes continuously. If we ascribe ė to the continuous
passage of inclusions from one stable configuration to the
other, it must result from an integral over all these processes.
The constant flow ė can be determined by counting all strain
defects passing through the asymmetry zero. Let us denote
by n(V ,�) the number density of double-well potentials of
barrier height V and asymmetry � in the sample. Since
�̇ = ėGvei /2 (see equation (3)), one would have a number of
ėGvei n(V , 0)δt/2 of double-well potentials of height V per
unit volume passing through the asymmetry zero in the time
δt , if e and ei had the same orientation. Since one has five
independent shears, one has to add a factor 1/

√
5 from the

directional average.
The next question is: how much do these passing entities

add to the shear flow? Each of these entities makes in the long
run a contribution of vei to the flow, again with the factor 1/

√
5

from the average orientation of the shear ei of the defect to the
flow direction. The total flow results from an integral over all
these processes, so

ė = ė
∫ ∞

0

G(vei )
2

2

n(V , 0)

5
lc(V ) dV . (8)

lc(V ) is the cut-off at the barrier Vc from equation (7). Thus∫ ∞

0

(vei )
2n(V , 0)

10
lc(V ) dV = 1

G
. (9)

Equation (9) can be used to calculate the contribution of
the shear strain defects to the shear compliance. To do this,
consider first the free energy F = −kBT ln Z of a single strain
defect with asymmetry �. The partition function Z is

Z = 2 cosh
�

2kBT
. (10)

Since the asymmetry � changes by σvei/2 if one applies a
stress σ in the direction of ei , one has a contribution to the
shear compliance determined by

∂2 F

∂σ 2
= − v2e2

i

16kBT cosh2 �/2kBT
. (11)

In order to get the full recoverable compliance J 0
e

(the compliance after subtraction of the viscous flow
contribution [14]), one has to integrate over the barrier heights
V and the asymmetries �. Here, we assume that the
dependence of n(V ,�) on � is given by the Boltzmann factor
exp(−F/kBT )

n(V ,�) = n(V , 0) cosh
�

2kBT
. (12)

The equation for the recoverable compliance is

J 0
e = 1

G
+

∫ ∞

0

∫ ∞

−∞
v2e2

i n(V , 0)

80kBT cosh �/2kBT
dV d�. (13)

The asymmetry can be integrated out. With equation (9),
one finds for the relaxational part of the recoverable
compliance

G J 0
e − 1 ≡ f0 = π

4
. (14)

3. Comparison to experiment

3.1. The parametrization of the barrier density

The comparison to experiment requires a knowledge of the
barrier density n(V , 0), which is difficult to model, particularly
for glass-forming systems, which need to be complex to
avoid crystallization. Therefore we describe n(V , 0) or, more
accurately, its product with the average square of the coupling
constant, by the pragmatic form

l(V ) = lnlC(V ) exp

(
βK(V − Vc)

kBT

)
. (15)

The normalization factor ln is determined by the
normalization condition∫ ∞

0
l(V ) dV = 1. (16)

The parameter βK has a close correspondence to the
Kohlrausch-β of approximately 0.5 of the Kohlrausch form
exp(−tβ), the most popular fitting form for glassy relaxation.
It supplies the slope −βK at frequencies slightly above the α-
peak frequency. But the form is purely pragmatic, without
any physical significance, with the exception of the cut-off.
Note that this cut-off is not very sharp; therefore the βK-values
one obtains tend to be larger than those of a Kohlrausch fit,
between 0.5 and 0.7. If the glass former exhibits a pronounced
secondary peak (Johari–Goldstein peak) one needs to add a
Gaussian with three parameters to the form of equation (15).
In this case, one has to reckon with different peak amplitudes
in shear and dielectrics.

The complex shear compliance, from which the complex
modulus G( ) can be easily calculated by inversion, is given by

G J ′(ω) = 1 + f0

∫ ∞

0
l(V )

1

1 + ω2τ 2
V

dV (17)

and

G J ′′(ω) = f0

∫ ∞

0
l(V )

ωτV

1 + ω2τ 2
V

dV + 1

ωτm
. (18)

Note that the factor f0 = G J 0
e − 1 appears here, which

according to equation (14) should be π/4. τm is the Maxwell
time η/G.

3.2. Dielectric susceptibility

If one deals with a single type of double-well potentials, they
should show up with the same l(V ) in the shear compliance
and in the dielectric susceptibility. The only difference lies in
the viscous effects, which in the dielectric case should lead to
a relaxation with the Debye relaxation time τD

τD = 4πηr 3
H

kBT
, (19)

where rH is the hydrodynamic radius of the molecule.
Since structural rearrangements and Debye relaxation

must be considered as independent processes influencing the
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Figure 2. Model fits (continuous lines) for G ′′(ω) and ε ′′(ω) of a
diffusion pump oil.

same molecule, one has to fold the two processes in frequency
or to multiply them in time. Thus one can use the same l(V ) as
in the shear case, replacing the τV of the Arrhenius equation,
equation (6), by the shorter relaxation time τv

τv = τVτD

τV + τD
. (20)

With this definition, the dielectric susceptibility (after
subtraction of the conductivity contribution) reads

ε ′(ω) − ε∞
ε(0) − ε∞

=
∫ ∞

0
l(V )

1

1 + ω2τ 2
v

dV (21)

and
ε ′′(ω)

ε(0) − ε∞
=

∫ ∞

0
l(V )

ωτv

1 + ω2τ 2
v

dV . (22)

Here ε(0) is the static dielectric susceptibility and ε∞ is the real
part of ε(ω) in the GHz range (larger than n2, the square of the
refractive index, because of vibrational contributions [15]).

3.3. An example: polyphenylene

Santovac 5P or PPE (polyphenylene) is a diffusion pump oil,
consisting of a short chain of five phenyl rings connected
by oxygens. The measurements were done by the Roskilde
group [6].

If one adjusts the five parameters G, η, J 0
e , βK and τc

to the shear data, they exhibit a strong scatter; the data are
too featureless to be able to fix five parameters to the desired
accuracy of about 10%. One way to overcome this difficulty is
to fit both the shear and the dielectric data with the same τc (as
one should do). This way was employed in our example PPE.
Then one obtains the other four parameters with reasonable
accuracy from the shear data and ε0, ε∞ and τD from the
dielectric data. One gets a good fit, as one can see in figure 2.
The shear modulus parameters are G = 1.067 GPa and η =
0.0634 GPa s. f0 was 2.4±1, clearly larger than the prediction
of π/4 of equation (14), but close to other values reported in
the literature [16]. βK was 0.5 both for shear and dielectrics,
the lifetime τc/τm was 2.37, close to the predicted value of
equation (5), and τD/τm was 8.1.

4. Discussion and summary

The Eshelby model presented here has one distinct advantage,
namely a direct connection to the elementary flow process.
Thus its parameters can be linked to the details of the structure.

To illustrate this, let us consider the example of Santovac
5P or polyphenylene of figure 2. The molecule consists of
five phenyl rings bonded by oxygen atoms. Such an oxygen
bond is rather flexible. Therefore one should assess the typical
molecular volume to one of these phenyl rings, as far as
packing considerations are concerned. The density is about
1250 kg m−3, so the volume of one phenyl ring is 0.12 nm3.

With this volume and the modulus of 1.06 GPa, the
formation energy Ea of the four-molecule strain defect of
figure 1 according to equation (1) is 0.173 eV, corresponding
to a temperature of 2004 K. The barrier height should be of the
same order, probably even quite substantially lower because
of the anharmonicity of the potential. This barrier height
is too low; the barriers which cause the flow are centered
around kBTg ln τm/τ0, where τ0 is the microscopic time of
about 10−13 s. At 254 K, this means a barrier height of 0.7 eV,
much higher than the one of the four-atom defect. Though we
cannot answer the question about what kind of defect might
have such a high barrier, the example shows that our Eshelby
consideration allows us to check ideas on a quantitative level.

The measured recoverable relaxational compliance J 0
e is

clearly larger than the prediction of equation (13), in agreement
with other findings [16] on molecular undercooled liquids in
the literature. This indicates components of the relaxational
jump which reverse after a while in following rearrangements,
making the contribution of the shear defect to the flow smaller
than expected from its coupling to the stress. Imagine, for
example, that an ellipsoidal molecule orients itself in the
direction of the external stress in the relaxational jump. Such
a motion would enhance the relaxational compliance, but it
would not contribute to the flow, because the molecule would
reorient.

An unsolved riddle (an old riddle [4]) is the short Debye
relaxation time. The ratio of τD and τm according to
equation (19) is

τD

τm
= 4πGr 3

H

kBT
. (23)

If we take rH from the molecular volume by 4πr 3
H/3 =

vmol, this ratio for the phenyl ring in Santovac 5P at 254 K
should be 110, a factor of 14 higher than the one of 8.1 found in
experiment. In terms of the radius rH, this means that the radius
must be only 40% of the one calculated from the molecular
volume. One knows from NMR gradient measurements of the
molecular diffusion [5, 17] that the hydrodynamic radius is a
bit smaller than the one calculated from the molecular volume,
but not that much.

Maybe the process which we characterize by τD has
another and faster mechanism than the one considered by
Debye, which might account for the fact that it is accompanied
by the relaxation of the energy and by the relaxation of the
structure [15, 18].

Another open question is whether the structural rearrange-
ments fully relax the molecular orientation, as assumed for
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simplicity in the derivation of equations (21) and (22). Their
number is limited by the cut-off at Vc, so it is conceivable that
some dielectric polarization remains, which should appear as
an additional Debye relaxation at the Debye relaxation time.
In fact, dielectric measurements in the monoalcohols [19] look
as if most of the reorientation happened in a Debye-like pro-
cess long after the Maxwell time.

We conclude that the Eshelby model for the highly viscous
flow, though it raises more questions than it answers, provides a
new way to tackle an old and difficult problem on a quantitative
level.
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